Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-Bromo-2,6-dihydroxybenzene containing $R_{4}^{4}(8)$ rings and $C(2)$ helices

Peter Kirsop, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk
Received 22 March 2004
Accepted 23 March 2004
Online 21 April 2004

Molecules of the title compound (also known as 2-bromoresorcinol), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}_{2}$, are essentially planar and possess normal geometrical parameters. The crystal packing is influenced by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} / \mathrm{Br}$ hydrogen bonds and $\pi-\pi$ stacking interactions, resulting in a distinctive highsymmetry structure containing $R_{4}^{4}(8)$ rings and helical $C(2)$ chains.

Comment

The title compound, (I) (Fig. 1), also known as 2-bromoresorcinol, arose during our studies to determine the philicity of aryl radicals by competitive cyclization (Kirsop et al., 2004).

(I)

Compound (I) possesses normal geometrical parameters [mean $\mathrm{C}-\mathrm{C}=1.386$ (2) $\AA, \mathrm{C} 1-\mathrm{Br} 1=1.885$ (2) \AA and mean $\mathrm{C}-\mathrm{O}=1.373$ (3) \AA] and, as expected, is essentially planar (for the non-H atoms, the r.m.s deviation from the best leastsquares plane is $0.008 \AA$).

As well as van der Waals forces, the crystal packing is strongly influenced by hydrogen bonding (Table 1). A hydrogen bond involving atom H 2 is bifurcated to an intermolecular O and an intramolecular Br acceptor species, and the donor-acceptor bond-angle sum about atom H 2 is 360°. The situation involving atom H 1 is less clear cut. As well as an intermolecular $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ bond (see Table 1 for symmetry code), there is also a possible, very long, intermolecular O1$\mathrm{H} 1 \cdots$ Br 1^{1} contact with an $\mathrm{H} \cdots$ Br distance of $3.13 \AA$, although this was flagged as being of questionable significance in a PLATON (Spek, 2003) analysis of (I). However, the donoracceptor bond-angle sum for atoms $\mathrm{O} 1, \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{Br} 1^{\mathrm{i}}$ about H 1 is 358°, which suggests that this interaction may have some significance beyond being merely a packing contact.

The hydrogen-bonding scheme in (I) results in two distinctive submotifs to the unit-cell packing. In the first of these, the $\overline{4}$ axis along [001] at $x=\frac{1}{2}, y=\frac{1}{4}$, with the inversion point at $z=\frac{3}{8}$, and equivalent locations, generates a closed ring of four molecules of (I) by way of four $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ bonds (Fig. 2), thus characterized by an $R_{4}^{4}(8)$ motif (Bernstein et al., 1995).

In the second submotif, the 4_{1} screw axis at $x=\frac{1}{4}, y=\frac{1}{2}$ generates helical chains of molecules of (I) linked by O2$\mathrm{H} 2 \cdots \mathrm{O} 2$ hydrogen bonds, forming $C(2)$ chains (Fig. 3). Spacegroup symmetry results in an equal number of clockwise and anticlockwise helices, by way of the alternating (with respect to both [100] and [010]) array of 4_{1} and 4_{3} axes.

Finally, $\pi-\pi$ stacking interactions are present in (I). The inversion centre at $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ and equivalent locations generates pairs of molecules of (I), with a $C g \cdots C g^{\text {iii }}$ separation of 3.6397 (12) $\AA[C g$ is the centroid of the C1-C6 ring at (0.3348 , $0.2915,0.7669$); symmetry code: (iii) $\left.\frac{1}{2}-x, \frac{1}{2}-y, \frac{3}{2}-z\right]$. The best least-squares ring planes for $C g$ and $C g^{\text {iii }}$ are exactly parallel (dihedral angle $=0.0^{\circ}$) and are separated by $3.470 \AA$. The lateral displacement of $C g^{\text {iii }}$ relative to the normal from the $C g$ best least-squares plane at $C g$ to the $C g^{\text {iii }}$ best leastsquares plane is $1.098 \AA$. The unit-cell packing of (I) is shown in Fig. 4.

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii and the intramolecular hydrogen bond is shown as a dashed line.

Figure 2
Part of the crystal structure of (I), showing a hydrogen-bonded $R_{4}^{4}(8)$ ring and a close $\pi-\pi$ contact (ring centroids linked by an open line) [symmetry codes: (i) $\frac{3}{4}-y, x-\frac{1}{4}, \frac{3}{4}-z$; (ii) $\frac{1}{4}+y, \frac{3}{4}-x, \frac{3}{4}-z$; (iii) $1-x$, $\frac{1}{2}-y, z$; (iv) $\left.\frac{1}{2}-x, \frac{1}{2}-y, \frac{4}{2}-z\right]$. H atoms bonded to C atoms and the unit-cell box have been omitted for clarity.

Figure 3

Part of the crystal structure of (I), showing a hydrogen-bonded helical chain of $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ bonds [symmetry codes: (i) $y-\frac{1}{4}, \frac{3}{4}-x, z-\frac{1}{4}$, (ii) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$; (iii) $\frac{3}{4}-y, \frac{1}{4}+x, z-\frac{3}{4}$; (iv) $\left.x, y, 1-z\right]$. Atom H1, C-bound H atoms and the intramolecular $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1$ hydrogen bond have been omitted for clarity, as has the unit-cell box.

Figure 4
The unit-cell packing in (I), viewed down [001], with C-bound H atoms omitted for clarity. The hydrogen bonds forming the $R_{4}^{4}(8)$ loops are indicated by thin lines and the hydrogen bonds forming the helical chains are indicated by dashed lines. The ring centroids are indicated by small spheres and the $\pi-\pi$ interactions by open lines. The cell orientation corresponds to that given for the second setting of $I 4_{1} / a$ in International Tables for X-ray Crystallography (1983, Vol. A).

Although the local hydrogen-bonding motifs are similar, the structure of (I) is entirely different to that of 1,3,5-tribromo-2,6-dihydroxybenzene (Kirsop et al., 2004), which contains
chain-like associations of molecules and is chiral by way of the molecular packing.

Experimental

A solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}(3.04 \mathrm{~g}, 0.024 \mathrm{~mol})$ and $\mathrm{NaOH}(0.96 \mathrm{~g}$, $0.024 \mathrm{~mol})$ in distilled water (36 ml) was added to a suspension of 1,3,5-tribromo-2,6-dihydroxybenzene (Kirsop et al., 2004; 4.16 g , 0.012 mol) in a $1: 5$ mixture of methanol and water (50 ml). The resulting mixture was stirred at 293 K for 1 h , after which time the suspension had disappeared, leaving a pale-yellow liquid. The solution was acidified with $1 M \mathrm{HCl}(4 \mathrm{ml})$ and extracted with diethyl ether ($4 \times 50 \mathrm{ml}$), and the extract was dried over anhydrous MgSO_{4} for 10 min . The MgSO_{4} was removed by filtration and the solvent was removed at reduced pressure to give a pale-cream powder (yield $1.86 \mathrm{~g}, 82 \%$). A sample of this powder was recrystallized from hot ethyl acetate to give large colourless needles of (I) [m.p. 373 K ; literature value (Rice, 1926) 375.5 K . ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.37(2 \mathrm{H}$, $s, \mathrm{OH}), 6.60(2 \mathrm{H}, d, J=8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.10(1 \mathrm{H}, t, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 99.4,108.1,129.0,152.9 ;$ IR $\left(v_{\max }, \mathrm{cm}^{-1}\right): 3330$, 1460, 1295, 1035.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}_{2}$
$M_{r}=189.01$
Tetragonal, $I 4_{1} / a$
$a=19.2497$ (10) A
$c=6.9209(4) \AA$
$V=2564.5(2) \AA^{3}$
$Z=16$
$D_{x}=1.958 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3773

> reflections
$\theta=3.0-29.6^{\circ}$
$\mu=6.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Shard, colourless
$0.41 \times 0.39 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART1000 CCD area-
detector diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.118, T_{\text {max }}=0.321$
10408 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.064$
$S=0.97$
1869 reflections
83 parameters
H -atom parameters constrained
1869 independent reflections
1395 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-23 \rightarrow 27$
$k=-27 \rightarrow 19$
$l=-9 \rightarrow 9$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0357 P)^{2}\right]$
\quad where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL 97
\quad (Sheldrick, 1997)
Extinction coefficient: $0.00240(17)$

Table 1
Geometry of hydrogen bonds and short intramolecular contacts $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.95	$2.773(2)$	160
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{i}}$	0.86	3.13	$3.7451(16)$	131
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.88	2.20	$2.9233(17)$	139
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1$	0.88	2.60	$3.1137(15)$	118

Symmetry codes: (i) $\frac{3}{4}-y, x-\frac{1}{4}, \frac{3}{4}-z$; (ii) $y-\frac{1}{4}, \frac{3}{4}-x, z-\frac{1}{4}$.

H atoms bound to O atoms were located from difference maps and refined as riding. H atoms bound to C atoms were placed geometrically and refined as riding. For all H atoms, the constraint $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom) was applied.

organic compounds

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1314). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004). Acta Cryst. E60, o222o224.
Rice, G. P. (1926). J. Am. Chem. Soc. 48, 3125-3130.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

